An Enhanced Spherical Cubic fuzzy WASPAS Method and its Application for the Assessment of Service Quality of Crowdsourcing Logistics Platform
DOI:
https://doi.org/10.31181/sdmap31202641Keywords:
Multiple criteria decision analysis, Service quality of crowdsourcing logistics platform, SCF set, Renyi entropy, WASPAS methodAbstract
The service quality of crowdsourcing logistics platforms (CLP) represents the fulfillment of standardized requirements during service delivery. Evaluating this quality enables quantification of service performance, identification of deficiencies in key indicators and optimization of operational efficiency. Such assessment helps standardize courier behavior, enhance user satisfaction, and strengthen platform competitiveness. This study proposes an enhanced decision-making method for assessing CLP service quality under uncertainty using spherical cubic fuzzy (SCF) sets, which effectively capture fuzzy and uncertain information. We develop an SCF-based approach integrating Renyi entropy and the WASPAS method, featuring four key contributions: (1) definition of SCF Aczel-Alsina operations and four corresponding aggregation operators (weighted averaging, geometric, ordered weighted averaging, and ordered weighted geometric); (2) development of an SCF-Renyi entropy weight method using score functions to determine criteria weights; (3) improvement of the WASPAS method through SCF Aczel-Alsina operators; and (4) validation through a supplier selection case study demonstrating the method's applicability. Sensitivity analysis confirms the approach's stability and universality in handling multi-criteria decision analysis problems.
Downloads
References
Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338-353. https://doi.org/https://doi.org/10.1016/S0019-9958(65)90241-X.
Atanassov, K. T. (1986). Intuitionistic fuzzy sets. Fuzzy Sets and Systems, 20(1), 87-96. https://doi.org/https://doi.org/10.1016/S0165-0114(86)80034-3.
Yager, R. R., & Abbasov, A. M. (2013). Pythagorean Membership Grades, Complex Numbers, and Decision Making. International Journal of Intelligent Systems, 28(5), 436-452. https://doi.org/10.1002/int.21584.
Yager, R. R. (2014). Pythagorean Membership Grades in Multicriteria Decision Making. Ieee Transactions on Fuzzy Systems, 22(4), 958-965. https://doi.org/10.1109/tfuzz.2013.2278989.
Yager, R. R. (2017). Generalized Orthopair Fuzzy Sets. Ieee Transactions on Fuzzy Systems, 25(5), 1222-1230. https://doi.org/10.1109/tfuzz.2016.2604005.
Senapati, T., & Yager, R. R. (2020). Fermatean fuzzy sets. Journal of Ambient Intelligence and Humanized Computing, 11(2), 663-674. https://doi.org/10.1007/s12652-019-01377-0.
Rong, Y., Yu, L., Niu, W., Liu, Y., Senapati, T., & Mishra, A. R. (2022). MARCOS approach based upon cubic Fermatean fuzzy set and its application in evaluation and selecting cold chain logistics distribution center. Engineering Applications of Artificial Intelligence, 116. https://doi.org/10.1016/j.engappai.2022.105401.
Huang, G., Xiao, L., & Zhang, G. (2020). Improved failure mode and effect analysis with interval-valued intuitionistic fuzzy rough number theory. Engineering Applications of Artificial Intelligence, 95. https://doi.org/10.1016/j.engappai.2020.103856.
Atanassov, K., & Gargov, G. (1989). Interval valued intuitionistic fuzzy sets. Fuzzy Sets and Systems, 31(3), 343-349. https://doi.org/https://doi.org/10.1016/0165-0114(89)90205-4.
Soni, A., Das, P. K., & Kumar, S. (2023). Application of q-rung orthopair fuzzy based SWARA-COPRAS model for municipal waste treatment technology selection. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-023-28602-w.
Attaullah, S., Ullah, S., Drissi, R. S., & Al-Duais, F. (2023). A new type of cosine similarity measures based on intuitionistic hesitant fuzzy rough sets for the evaluation of volatile currency: evidence from the Pakistan economy. Knowledge and Information Systems, 65(11), 4741-4758. https://doi.org/10.1007/s10115-023-01909-3.
Rani, P., Alrasheedi, A. F., Mishra, A. R., & Cavallaro, F. (2023). Interval-valued Pythagorean fuzzy operational competitiveness rating model for assessing the metaverse integration options of sharing economy in transportation sector. Applied Soft Computing, 148. https://doi.org/10.1016/j.asoc.2023.110806.
Rong, Y., Yu, L., Liu, Y., Simic, V., & Garg, H. (2023). The FMEA model based on LOPCOW-ARAS methods with interval-valued Fermatean fuzzy information for risk assessment of R&D projects in industrial robot offline programming systems. Computational and Applied Mathematics, 43(1), 25. https://doi.org/10.1007/s40314-023-02532-2.
Zhan, J., Deng, J., Xu, Z., & Martinez, L. (2023). A Three-Way Decision Methodology With Regret Theory via Triangular Fuzzy Numbers in Incomplete Multiscale Decision Information Systems. Ieee Transactions on Fuzzy Systems, 31(8), 2773-2787. https://doi.org/10.1109/tfuzz.2023.3237646.
Cuong, B. C. (2014). Picture fuzzy sets. Journal of Computer Science and Cybernetics, 30, 409-420.
Mahmood, T., Ullah, K., Khan, Q., & Jan, N. (2019). An approach toward decision-making and medical diagnosis problems using the concept of spherical fuzzy sets. Neural Computing & Applications, 31(11), 7041-7053. https://doi.org/10.1007/s00521-018-3521-2.
Donyatalab, Y., Gundog, F. K., Farid, F., Seyfi-Shishavan, S. A., Farrokhizadeh, E., & Kahraman, C. (2022). Novel spherical fuzzy distance and similarity measures and their applications to medical diagnosis. Expert Systems with Applications, 191. https://doi.org/10.1016/j.eswa.2021.116330.
Ganie, A. H., Dutta, D., & Sharma, S. K. (2024). A New Entropy Measure and COPRAS Method for Spherical Fuzzy Sets. Ieee Access, 12, 63917-63931. https://doi.org/10.1109/ACCESS.2024.3392352.
Bonab, S. R., Ghoushchi, S. J., Deveci, M., & Haseli, G. (2023). Logistic autonomous vehicles assessment using decision support model under spherical fuzzy set integrated Choquet Integral approach. Expert Systems with Applications, 214. https://doi.org/10.1016/j.eswa.2022.119205.
Zhang, H., Wang, H., Cai, Q., & Wei, G. (2023). Spherical fuzzy hamacher power aggregation operators based on entropy for multiple attribute group decision making. Journal of Intelligent & Fuzzy Systems, 44(5), 8743-8771. https://doi.org/10.3233/jifs-224468.
Rajput, L., & Kumar, S. (2022). Spherical Fuzzy Choquet Integral-Based VIKOR Method for Multi-Criteria Group Decision-Making Problems. Cybernetics and Systems. https://doi.org/10.1080/01969722.2022.2151181.
Akram, M., Zahid, K., & Kahraman, C. (2023). A PROMETHEE based outranking approach for the construction of Fangcang shelter hospital using spherical fuzzy sets. Artificial Intelligence in Medicine, 135. https://doi.org/10.1016/j.artmed.2022.102456.
Gao, K., Liu, T., Rong, Y., Simic, V., Garg, H., & Senapati, T. (2024). A novel BWM-entropy-COPRAS group decision framework with spherical fuzzy information for digital supply chain partner selection. Complex & Intelligent Systems, 10(5), 6983-7008. https://doi.org/10.1007/s40747-024-01500-5.
Ayaz, T., Al-Shomrani, M. M., Abdullah, S., & Hussain, A. (2020). Evaluation of Enterprise Production Based on Spherical Cubic Hamacher Aggregation Operators. Mathematics, 8(10). https://doi.org/10.3390/math8101761.
Ali, G., Nabeel, M., & Farooq, A. (2024). Extended ELECTRE method for multi-criteria group decision-making with spherical cubic fuzzy sets. Knowledge and Information Systems, 66(10), 6269-6306. https://doi.org/10.1007/s10115-024-02132-4.
Mohammed, M. T., Shubber, M. S., Qahtan, S., Alsatta, H. A., Mourad, N., Zaidan, A. A., & Zaidan, B. B. (2025). Determining the superiority of a robust cloud fault tolerance mechanism using a spherical cubic fuzzy set-based decision approach. Engineering Applications of Artificial Intelligence, 148. https://doi.org/10.1016/j.engappai.2025.110402.
Zavadskas, E. K., Turskis, Z., Antucheviciene, J., & Zakarevicius, A. (2012). Optimization of Weighted Aggregated Sum Product Assessment. Elektronika Ir Elektrotechnika, 122(6), 3-6. https://doi.org/10.5755/j01.eee.122.6.1810.
Senapati, T., & Chen, G. (2022). Picture fuzzy WASPAS technique and its application in multi-criteria decision-making. Soft Computing, 26(9), 4413-4421. https://doi.org/10.1007/s00500-022-06835-0.
Wei, D., Rong, Y., Garg, H., & Liu, J. (2022). An extended WASPAS approach for teaching quality evaluation based on pythagorean fuzzy reducible weighted Maclaurin symmetric mean. Journal of Intelligent & Fuzzy Systems, 42(4), 3121-3152. https://doi.org/10.3233/jifs-210821.
Aytekin, A., Gorcun, O. F., Ecer, F., Pamucar, D., & Karama, C. (2023). Evaluation of the pharmaceutical distribution and warehousing companies through an integrated Fermatean fuzzy entropy-WASPAS approach. Kybernetes, 52(11), 5561-5592. https://doi.org/10.1108/k-04-2022-0508.
Kaya, S. K., Kundu, P., & Gorcun, O. F. (2023). Evaluation of container port sustainability using WASPAS technique using on type-2 neutrosophic fuzzy numbers. Marine Pollution Bulletin, 190. https://doi.org/10.1016/j.marpolbul.2023.114849.
Rong, Y., Yu, L., Liu, Y., Peng, X., & Garg, H. (2024). An integrated group decision-making framework for assessing S3PRLPs based on MULTIMOORA-WASPAS with q-rung orthopair fuzzy information. Artificial Intelligence Review, 57(6). https://doi.org/10.1007/s10462-024-10782-7.
Jun, Y. B. (2017). A novel extension of cubic sets and its applications in $BCK/BCI$-algebras. Annals of Fuzzy Mathematics and Informatics, 14(5), 475-486. Retrieved from ://KJD:ART002284091.
Aczél, J., & Alsina, C. (1982). Characterizations of some classes of quasilinear functions with applications to triangular norms and to synthesizing judgements. aequationes mathematicae, 25(1), 313-315. https://doi.org/10.1007/BF02189626.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Dongmei Li , Guorou Wan, Yuan Rong (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.