Exchange Property in Double Edge Resolving Partition Sets and Its Use in City Development
DOI:
https://doi.org/10.31181/sdmap1120246Keywords:
Resolving set, Metric Dimension, Edge Metric Dimension, Hexagonal NanosheetAbstract
The exchange property in double-edge resolving partition sets is examined in this article, along with some real-world applications to city buildings. In graph theory, double-edge resolving sets are essential because they provide information on optimizing transportation and urban infrastructure. When utility units are switched out, the exchange property ensures the system is efficient and still works. City planners can create more adaptable and durable urban layouts by using this feature, guaranteeing that the best
routes and shortest distances remain intact in various setups. We show how the exchange property in double-edge resolving partition sets can improve traffic management, emergency response systems, and overall urban planning through theoretical analysis and real-world case studies. The findings highlight the capability of graph-theoretical techniques in addressing complicated urban planning challenges, ultimately contributing to smarter, extra-sustainable town development. This study highlights the potential of advanced graph-theoretical concepts to address complex urban development challenges, contributing to the creation of smarter, more adaptive cities.
Downloads
References
Koam, A. N., Ali, S., Ahmad, A., Azeem, M., & Jamil, M. K. (2023). Resolving set and exchange property in nanotube. AIMS Mathematics, 8(9), 20305-20323 https://doi.org/10.3934/math.20231035
Boutin, D. L. (2009). Determining sets, resolving sets, and the exchange property. Graphs and Combinatorics, 25(6), 789-806. https://doi.org/10.1007/s00373-010-0880-6
Hauptmann, M., Schmied, R., & Viehmann, C. (2012). Approximation complexity of metric dimension problem. Journal of Discrete Algorithms, 14, 214-222. https://doi.org/10.1016/j.jda.2011.12.010
Garey, M. R.; Johnson, D. S. (1979). Victor Klee (ed.). Computers and Intractability: A Guide to the Theory of NP-Completeness. A Series of Books in the Mathematical Sciences. San Francisco, Calif.: W. H. Freeman and Co, 498-500.
Slater, P. J. (1975). Leaves of Trees. Proceeding of the 6th Southeastern Conference on Combinatorics, Graph Theory, and Computing, Congressus Numerantium, 14, 549-559.
Harary, F., & Melter, R. A. (1976). On the metric dimension of a graph. Ars combin, 2, 191-195.
Chartrand, G., Eroh, L., Johnson, M. A., & Oellermann, O. R. (2000). Resolvability in graphs and the metric dimension of a graph. Discrete Applied Mathematics, 105(1-3), 99-113. https://doi.org/10.1016/S0166-218X(00)00198-0
Blumenthal, L. M. (1970). Theory and applications of distance geometry. Discrete Applied Mathematics, 12(1), 1-16.
Johnson, M. (1993). Structure-activity maps for visualizing the graph variables arising in drug design. Journal of Biopharmaceutical Statistics, 3(2), 203-236. https://doi.org/10.1080/10543409308835060
Sebő, A., & Tannier, E. (2004). On metric generators of graphs. Mathematics of Operations Research, 29(2), 383-393. https://doi.org/10.1287/moor.1030.0070
Ahmad, A., Koam, A. N., Siddiqui, M. H. F., & Azeem, M. (2022). Resolvability of the starphene structure and applications in electronics. Ain Shams Engineering Journal, 13(2), 101587. https://doi.org/10.1016/j.asej.2021.09.014
Khuller, S., Raghavachari, B., & Rosenfeld, A. (1996). Landmarks in graphs. Discrete applied mathematics, 70(3), 217-229. https://doi.org/10.1016/0166-218X(95)00106-2
Chartrand, G., Eroh, L., Johnson, M. A., & Oellermann, O. R. (2000). Resolvability in graphs and the metric dimension of a graph. Discrete Applied Mathematics, 105(1-3), 99-113. https://doi.org/10.1016/S0166-218X(00)00198-0
Manuel, P., Bharati, R., & Rajasingh, I. (2008). On minimum metric dimension of honeycomb networks. Journal of Discrete algorithms, 6(1), 20-27. https://doi.org/10.1016/j.jda.2006.09.002
Piperno, A. (2008). Search space contraction in canonical labeling of graphs. arXiv preprint arXiv:0804.4881. https://doi.org/10.48550/arXiv.0804.4881
Slater, P. J. (1975). Leaves of Trees. Proceeding of the 6th Southeastern Conference on Combinatorics, Graph Theory, and Computing, Congressus Numerantium, 14, 549-559.
Söderberg, S., & Shapiro, H. S. (1963). A combinatory detection problem. The American Mathematical Monthly, 70(10), 1066-1070. https://doi.org/10.1080/00029890.1963.11992174
Chvátal, V. (1983). Mastermind. Combinatorica, 3, 325-329. https://doi.org/10.1007/BF02579188
Perc, M., Gómez -Gardenes, J., Szolnoki, A.,Flor ́ıa, L. M., & Moreno, Y. (2013). Evolutionary dynamics of group interactions on structured populations: a review. Journal of the royal society interface, 10(80), 20120997. https://doi.org/10.1098/rsif.2012.0997
Perc, M., & Szolnoki, A. (2010). Coevolutionary games-a mini review. BioSystems, 99(2), 109-125. https://doi.org/10.1016/j.biosystems.2009.10.003
Javaid, I., & Shokat, S. (2008). On the partition dimension of some wheel related graphs. Journal of Prime Research in Mathematics, 4, 154-164.
Koam, A. N., Ahmad, A., Azeem, M., & Nadeem, M. F. (2022). Bounds on the partition dimension of one pentagonal carbon nanocone structure. Arabian Journal of Chemistry, 15(7), 103923. https://doi.org/10.1016/j.arabjc.2022.103923
Manuel, P., Bharati, R., & Rajasingh, I. (2008). On minimum metric dimension of honeycomb networks. Journal of Discrete algorithms, 6(1), 20-27. https://doi.org/10.1016/j.jda.2006.09.002
Raj, F. S., & George, A. (2015). On the metric dimension of silicate stars. ARPN Journal of Engineering and applied sciences, 10(5), 2187-2192.
Imran, S., Siddiqui, M. K., & Hussain, M. (2019). Computing the upper bounds for the metric dimension of cellulose network. Applied Mathematics E-Notes, 19, 585-605.
Imran, S., Siddiqui, M. K., Imran, M., & Hussain, M. (2018). On metric dimensions of symmetric graphs obtained by rooted product. Mathematics, 6(10), 191. https://doi.org/10.3390/math6100191
Ahsan, M., Zahid, Z., Zafar, S., Rafiq, A., Sindhu, M. S., & Umar, M. (2021). Computing the edge metric dimension of convex polytopes related graphs. Journal of Mathematics and Computer Science, 22(2), 174-188. https://doi.org/10.22436/jmcs.022.02.08
Koam, A. N., Ahmad, A., Ali, S., Jamil, M. K., & Azeem, M. (2024). Double edge resolving set and exchange property for nanosheet structure. Heliyon, 10(5), e26992. https://doi.org/10.1016/j.heliyon.2024.e26992
Zhang, X., & Naeem, M. (2021). Metric dimension of crystal cubic carbon structure. Journal of Mathematics, 2021(1), 3438611. https://doi.org/10.1155/2021/3438611
Koam, A. N., & Ahmad, A. (2020). Barycentric subdivision of Cayley graphs with constant edge metric dimension. IEEE Access, 8, 80624-80628. https://doi.org/10.1109/ACCESS.2020.2990109
Ali, S., Azeem, M., Zahid, M. A., Usman, M., & Pal, M. (2024). Novel resolvability parameter of some well-known graphs and exchange properties with applications. Journal of Applied Mathematics and Computing, 1-22. https://doi.org/10.1007/s12190-024-02137-w
Ismail, R., Ali, S., Azeem, M., & Zahid, M. A. (2024). Double resolvability parameters of fos-midomycin anti-malaria drug and exchange property. Heliyon, 10(13), e33211. https://doi.org/10.1016/j.heliyon.2024.e33211
Hussain, Z., Munir, M., Chaudhary, M., & Kang, S. M. (2018). Computing metric dimension and metric basis of 2D lattice of alpha-boron nanotubes. Symmetry, 10(8), 300. https://doi.org/10.3390/sym10080300
Krishnan, S., & Rajan, B. (2016). Fault-tolerant resolvability of certain crystal structures. Applied Mathematics, 7(7), 599-604. http://doi.org/10.4236/am.2016.77055
Ahmad, A., Bača, M., & Sultan, S. (2020). Computing the metric dimension of kayak paddles graph and cycles with chord. Proyecciones (Antofagasta), 39(2), 287-300. http://doi.org/10.22199/issn.0717-6279-2020-02-0018
Siddiqui, M. K., Naeem, M., Rahman, N. A., & Imran, M. (2016). Computing topological indices of certain networks. Journal of Optoelectronics and Advanced Materials, 18(9-10), 884-892.
Ashrafi, A. R., Došlic, T., & Saheli, M. (2011). The eccentric connectivity index of TUC4C8 (R) nanotubes. MATCH Communications in Mathematical Computer Chemistry, 65(1), 221-230.
Afzal Siddiqui, H. M., Nadeem, M. F., Azeem, M., Arshad, M. A., Haider, A., & Malik, M. A. (2022). Topological properties of supramolecular chain of different complexes of N-Salicylidene-L-Valine. Polycyclic Aromatic Compounds, 42(9), 6185-6198. https://doi.org/10.1080/10406638.2021.1980060
AlHoli, M. M., AbuGhneim, O. A., & Ezeh, H. A. (2017). Metric dimension of some path related graphs. Global Journal of Pure and Applied Mathematics, 13(2), 149-157.
Harary, F., & Melter, R. A. (1976). On the metric dimension of a graph. Ars Combinatoria, 2, 191-195.
Gupta, P., & Pahwa, K. (2014). Square pixels to hexagonal pixel structure representation technique. International Journal of Signal Processing, Image Processing and Pattern Recognition, 7(4), 137-144.
Manthey, R., Schlosser, T., & Kowerko, D. (2017). Generation of images with hexagonal tessellation using common digital cameras. Proceedings of the IBS International Summerschool on Computer Science, Computer Engineering and Education Technology.
Aiazzi, B., Baronti, S., Capanni, A., Santurri, L., & Vitulli, R. (2002). Advantages of hexagonal sampling grids and hexagonal shape detector elements in remote sensing imagers. In 2002 11th European Signal Processing Conference (pp. 1-4). IEEE.
Wen, W., & Khatibi, S. (2018). Virtual deformable image sensors: towards to a general framework for image sensors with flexible grids and forms. Sensors, 18(6), 1856. https://doi.org/10.3390/s18061856
Birch, C. P., Oom, S. P., & Beecham, J. A. (2007). Rectangular and hexagonal grids used for observation, experiment and simulation in ecology. Ecological modelling, 206(3-4), 347-359. https://doi.org/10.1016/j.ecolmodel.2007.03.041
Mocnik, F. B. (2019). A novel identifier scheme for the ISEA aperture 3 hexagon discrete global grid system. Cartography and Geographic Information Science, 46(3), 277-291. https://doi.org/10.1080/15230406.2018.1455157
Sahr, K., White, D., & Kimerling, A. J. (2003). Geodesic discrete global grid systems. Cartography and Geographic Information Science, 30(2), 121-134. https://doi.org/10.1559/152304003100011090
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Sikander Ali, Muhammad Kamran Jamil (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.