Exchange Property in Double Edge Resolving Partition Sets and Its Use in City Development

Authors

DOI:

https://doi.org/10.31181/sdmap1120246

Keywords:

Resolving set, Metric Dimension, Edge Metric Dimension, Hexagonal Nanosheet

Abstract

The exchange property in double-edge resolving partition sets is examined in this article, along with some real-world applications to city buildings. In graph theory, double-edge resolving sets are essential because they provide information on optimizing transportation and urban infrastructure. When utility units are switched out, the exchange property ensures the system is efficient and still works. City planners can create more adaptable and durable urban layouts by using this feature, guaranteeing that the best
routes and shortest distances remain intact in various setups. We show how the exchange property in double-edge resolving partition sets can improve traffic management, emergency response systems, and overall urban planning through theoretical analysis and real-world case studies. The findings highlight the capability of graph-theoretical techniques in addressing complicated urban planning challenges, ultimately contributing to smarter, extra-sustainable town development. This study highlights the potential of advanced graph-theoretical concepts to address complex urban development challenges, contributing to the creation of smarter, more adaptive cities.

Downloads

Download data is not yet available.

References

Koam, A. N., Ali, S., Ahmad, A., Azeem, M., & Jamil, M. K. (2023). Resolving set and exchange property in nanotube. AIMS Mathematics, 8(9), 20305-20323 https://doi.org/10.3934/math.20231035

Boutin, D. L. (2009). Determining sets, resolving sets, and the exchange property. Graphs and Combinatorics, 25(6), 789-806. https://doi.org/10.1007/s00373-010-0880-6

Hauptmann, M., Schmied, R., & Viehmann, C. (2012). Approximation complexity of metric dimension problem. Journal of Discrete Algorithms, 14, 214-222. https://doi.org/10.1016/j.jda.2011.12.010

Garey, M. R.; Johnson, D. S. (1979). Victor Klee (ed.). Computers and Intractability: A Guide to the Theory of NP-Completeness. A Series of Books in the Mathematical Sciences. San Francisco, Calif.: W. H. Freeman and Co, 498-500.

Slater, P. J. (1975). Leaves of Trees. Proceeding of the 6th Southeastern Conference on Combinatorics, Graph Theory, and Computing, Congressus Numerantium, 14, 549-559.

Harary, F., & Melter, R. A. (1976). On the metric dimension of a graph. Ars combin, 2, 191-195.

Chartrand, G., Eroh, L., Johnson, M. A., & Oellermann, O. R. (2000). Resolvability in graphs and the metric dimension of a graph. Discrete Applied Mathematics, 105(1-3), 99-113. https://doi.org/10.1016/S0166-218X(00)00198-0

Blumenthal, L. M. (1970). Theory and applications of distance geometry. Discrete Applied Mathematics, 12(1), 1-16.

Johnson, M. (1993). Structure-activity maps for visualizing the graph variables arising in drug design. Journal of Biopharmaceutical Statistics, 3(2), 203-236. https://doi.org/10.1080/10543409308835060

Sebő, A., & Tannier, E. (2004). On metric generators of graphs. Mathematics of Operations Research, 29(2), 383-393. https://doi.org/10.1287/moor.1030.0070

Ahmad, A., Koam, A. N., Siddiqui, M. H. F., & Azeem, M. (2022). Resolvability of the starphene structure and applications in electronics. Ain Shams Engineering Journal, 13(2), 101587. https://doi.org/10.1016/j.asej.2021.09.014

Khuller, S., Raghavachari, B., & Rosenfeld, A. (1996). Landmarks in graphs. Discrete applied mathematics, 70(3), 217-229. https://doi.org/10.1016/0166-218X(95)00106-2

Chartrand, G., Eroh, L., Johnson, M. A., & Oellermann, O. R. (2000). Resolvability in graphs and the metric dimension of a graph. Discrete Applied Mathematics, 105(1-3), 99-113. https://doi.org/10.1016/S0166-218X(00)00198-0

Manuel, P., Bharati, R., & Rajasingh, I. (2008). On minimum metric dimension of honeycomb networks. Journal of Discrete algorithms, 6(1), 20-27. https://doi.org/10.1016/j.jda.2006.09.002

Piperno, A. (2008). Search space contraction in canonical labeling of graphs. arXiv preprint arXiv:0804.4881. https://doi.org/10.48550/arXiv.0804.4881

Slater, P. J. (1975). Leaves of Trees. Proceeding of the 6th Southeastern Conference on Combinatorics, Graph Theory, and Computing, Congressus Numerantium, 14, 549-559.

Söderberg, S., & Shapiro, H. S. (1963). A combinatory detection problem. The American Mathematical Monthly, 70(10), 1066-1070. https://doi.org/10.1080/00029890.1963.11992174

Chvátal, V. (1983). Mastermind. Combinatorica, 3, 325-329. https://doi.org/10.1007/BF02579188

Perc, M., Gómez -Gardenes, J., Szolnoki, A.,Flor ́ıa, L. M., & Moreno, Y. (2013). Evolutionary dynamics of group interactions on structured populations: a review. Journal of the royal society interface, 10(80), 20120997. https://doi.org/10.1098/rsif.2012.0997

Perc, M., & Szolnoki, A. (2010). Coevolutionary games-a mini review. BioSystems, 99(2), 109-125. https://doi.org/10.1016/j.biosystems.2009.10.003

Javaid, I., & Shokat, S. (2008). On the partition dimension of some wheel related graphs. Journal of Prime Research in Mathematics, 4, 154-164.

Koam, A. N., Ahmad, A., Azeem, M., & Nadeem, M. F. (2022). Bounds on the partition dimension of one pentagonal carbon nanocone structure. Arabian Journal of Chemistry, 15(7), 103923. https://doi.org/10.1016/j.arabjc.2022.103923

Manuel, P., Bharati, R., & Rajasingh, I. (2008). On minimum metric dimension of honeycomb networks. Journal of Discrete algorithms, 6(1), 20-27. https://doi.org/10.1016/j.jda.2006.09.002

Raj, F. S., & George, A. (2015). On the metric dimension of silicate stars. ARPN Journal of Engineering and applied sciences, 10(5), 2187-2192.

Imran, S., Siddiqui, M. K., & Hussain, M. (2019). Computing the upper bounds for the metric dimension of cellulose network. Applied Mathematics E-Notes, 19, 585-605.

Imran, S., Siddiqui, M. K., Imran, M., & Hussain, M. (2018). On metric dimensions of symmetric graphs obtained by rooted product. Mathematics, 6(10), 191. https://doi.org/10.3390/math6100191

Ahsan, M., Zahid, Z., Zafar, S., Rafiq, A., Sindhu, M. S., & Umar, M. (2021). Computing the edge metric dimension of convex polytopes related graphs. Journal of Mathematics and Computer Science, 22(2), 174-188. https://doi.org/10.22436/jmcs.022.02.08

Koam, A. N., Ahmad, A., Ali, S., Jamil, M. K., & Azeem, M. (2024). Double edge resolving set and exchange property for nanosheet structure. Heliyon, 10(5), e26992. https://doi.org/10.1016/j.heliyon.2024.e26992

Zhang, X., & Naeem, M. (2021). Metric dimension of crystal cubic carbon structure. Journal of Mathematics, 2021(1), 3438611. https://doi.org/10.1155/2021/3438611

Koam, A. N., & Ahmad, A. (2020). Barycentric subdivision of Cayley graphs with constant edge metric dimension. IEEE Access, 8, 80624-80628. https://doi.org/10.1109/ACCESS.2020.2990109

Ali, S., Azeem, M., Zahid, M. A., Usman, M., & Pal, M. (2024). Novel resolvability parameter of some well-known graphs and exchange properties with applications. Journal of Applied Mathematics and Computing, 1-22. https://doi.org/10.1007/s12190-024-02137-w

Ismail, R., Ali, S., Azeem, M., & Zahid, M. A. (2024). Double resolvability parameters of fos-midomycin anti-malaria drug and exchange property. Heliyon, 10(13), e33211. https://doi.org/10.1016/j.heliyon.2024.e33211

Hussain, Z., Munir, M., Chaudhary, M., & Kang, S. M. (2018). Computing metric dimension and metric basis of 2D lattice of alpha-boron nanotubes. Symmetry, 10(8), 300. https://doi.org/10.3390/sym10080300

Krishnan, S., & Rajan, B. (2016). Fault-tolerant resolvability of certain crystal structures. Applied Mathematics, 7(7), 599-604. http://doi.org/10.4236/am.2016.77055

Ahmad, A., Bača, M., & Sultan, S. (2020). Computing the metric dimension of kayak paddles graph and cycles with chord. Proyecciones (Antofagasta), 39(2), 287-300. http://doi.org/10.22199/issn.0717-6279-2020-02-0018

Siddiqui, M. K., Naeem, M., Rahman, N. A., & Imran, M. (2016). Computing topological indices of certain networks. Journal of Optoelectronics and Advanced Materials, 18(9-10), 884-892.

Ashrafi, A. R., Došlic, T., & Saheli, M. (2011). The eccentric connectivity index of TUC4C8 (R) nanotubes. MATCH Communications in Mathematical Computer Chemistry, 65(1), 221-230.

Afzal Siddiqui, H. M., Nadeem, M. F., Azeem, M., Arshad, M. A., Haider, A., & Malik, M. A. (2022). Topological properties of supramolecular chain of different complexes of N-Salicylidene-L-Valine. Polycyclic Aromatic Compounds, 42(9), 6185-6198. https://doi.org/10.1080/10406638.2021.1980060

AlHoli, M. M., AbuGhneim, O. A., & Ezeh, H. A. (2017). Metric dimension of some path related graphs. Global Journal of Pure and Applied Mathematics, 13(2), 149-157.

Harary, F., & Melter, R. A. (1976). On the metric dimension of a graph. Ars Combinatoria, 2, 191-195.

Gupta, P., & Pahwa, K. (2014). Square pixels to hexagonal pixel structure representation technique. International Journal of Signal Processing, Image Processing and Pattern Recognition, 7(4), 137-144.

Manthey, R., Schlosser, T., & Kowerko, D. (2017). Generation of images with hexagonal tessellation using common digital cameras. Proceedings of the IBS International Summerschool on Computer Science, Computer Engineering and Education Technology.

Aiazzi, B., Baronti, S., Capanni, A., Santurri, L., & Vitulli, R. (2002). Advantages of hexagonal sampling grids and hexagonal shape detector elements in remote sensing imagers. In 2002 11th European Signal Processing Conference (pp. 1-4). IEEE.

Wen, W., & Khatibi, S. (2018). Virtual deformable image sensors: towards to a general framework for image sensors with flexible grids and forms. Sensors, 18(6), 1856. https://doi.org/10.3390/s18061856

Birch, C. P., Oom, S. P., & Beecham, J. A. (2007). Rectangular and hexagonal grids used for observation, experiment and simulation in ecology. Ecological modelling, 206(3-4), 347-359. https://doi.org/10.1016/j.ecolmodel.2007.03.041

Mocnik, F. B. (2019). A novel identifier scheme for the ISEA aperture 3 hexagon discrete global grid system. Cartography and Geographic Information Science, 46(3), 277-291. https://doi.org/10.1080/15230406.2018.1455157

Sahr, K., White, D., & Kimerling, A. J. (2003). Geodesic discrete global grid systems. Cartography and Geographic Information Science, 30(2), 121-134. https://doi.org/10.1559/152304003100011090

Published

2024-08-09

How to Cite

Ali, S., & Jamil, M. K. (2024). Exchange Property in Double Edge Resolving Partition Sets and Its Use in City Development. Spectrum of Decision Making and Applications, 1(1), 84-98. https://doi.org/10.31181/sdmap1120246