Constant Partition Dimension of Different Anticancer Drug Structures

Authors

DOI:

https://doi.org/10.31181/sdmap1120245

Keywords:

Anticancer drug structures, Vertex partition dimension, Locating number, Prtition resolving set

Abstract

Cancer is the rapidly expanding number of unwelcome cells in the body. Carcinogens are substances that cause symptoms. A certain type of chemical molecule in cigarette smoke is known as a carcinogen. It can spread to several bodily parts. Some of this illness's indications and symptoms include a lump, unusual bleeding, a persistent cough, weight increase or decrease, etc. One of the biggest contributors to this malignant illness is tobacco chewing. Factors include obesity, a bad diet, laziness, and increasing alcohol consumption. Anticancer medications are used to cure this disease. In this work, we studied some of the anticancer medications in terms of partition dimension, where the partition resolving set is an improper subset to settle the entire atom set of a graph into a unique way to access each atom independently.

Downloads

Download data is not yet available.

References

Figuerola, B., & Avila, C. (2019). The phylum bryozoa as a promising source of anticancer drugs. Marine Drugs, 17(8), 477. https://doi.org/10.3390/md17080477

Gao, W., Wang, W., F. & Farahani, M. R. (2016). Topological indices study of molecular structure in anticancer drugs. Journal of Chemistry, 2016, 3216327. https://doi.org/10.1155/2016/3216327

Kumar, S., Ahmad, M. K., Waseem, M., & Pandey, A. K. (2015). Drug targets for cancer treatment: an overview. Medicinal Chemistry, 5(3), 115-123. https://doi.org/10.4172/2161-0444.1000252

Al Khabyah, A. A., Jamil, M. K., Koam, A. N., A. Javed, A., & Azeem, M. (2022). Partition dimension of COVID antiviral drug structures. Mathematical Biosciences and Engineering, 19(10), 10078-10095. https://doi.org/10.3934/mbe.2022471

Shanmukha, M. C., Basavarajappa, N. S., Shilpa, K. C., & Usha, A. (2020). Degreebased topological indices on anticancer drugs with QSPR analysis. Heliyon, 6(6), e04235. https://doi.org/10.1016/j.heliyon.2020.e04235

Azeem, M., Jamil, M. K., Javed, A., & Ahmad, A. (2022). Verification of some topological indices of Y-junction based nanostructures by M-polynomials. Journal of Mathematics, 2022, 8238651. https://doi.org/10.1155/2022/8238651

Azeem, M., Imran, M., & Nadeem, M. F. (2021). Sharp bounds on partition dimension of hexagonal Mobius ladder. Journal of King Saud University-Science, 34(2), 101779. https://doi.org/10.1016/j.jksus.2021.101779

Azeem, M., Anwar, S., Jamil, M. K., Saeed, M., & Deveci, M. (2024). Topological Numbers of Fuzzy Soft Graphs and Their Application. Information Sciences, 667, 120468. https://doi.org/10.1016/j.ins.2024.120468

Koam, A. N. A., Azeem, M., Ahmad, A., & Masmali, I. (2024). Connection Numberbased Molecular Descriptors of Skin Cancer Drugs. Ain Shams Engineering Journal, 15(6), 102750. https://doi.org/10.1016/j.asej.2024.102750

Singh, P., Sharma, S., Sharma, S. K., & Bhat, V. K. (2021). Metric dimension and edge metric dimension of windmill graphs. AIMS Mathematics, 6(9), 9138-9153. https://doi.org/10.3934/math.2021531

Estrada-Moreno, A., Yero, I. G., & Rodríguez-Velázquez, J. A. (2021). On the (k,t)-metric dimension of graphs. The Computer Journal, 64(5), 707-720. https://doi.org/10.1093/comjnl/bxaa009

Pirzada, S., & Aijaz, M. (2021). On graphs with same metric and upper dimension. Discrete Mathematics, Algorithms and Applications, 13(2), 2150015. https://doi.org/10.1142/S1793830921500154

Azeem, M., & Nadeem, M. F. (2021). Metric-based resolvability of polycyclic aromatic hydrocarbons. The European Physical Journal Plus, 136, 395. https://doi.org/10.1140/epjp/s13360-021-01399-8

Imran, S., Siddiqui, M. K., Imran, M., & Hussain, M. (2018). On metric dimensions of symmetric graphs obtained by rooted product. Mathematics, 6(10), 191. https://doi.org/10.3390/math6100191

Koam, A. N., Ahmad, A., Abdelhag, M. E., & Azeem, M. (2021). Metric and fault tolerant metric dimension of hollow coronoid. IEEE Access, 9, 81527-81534. https://doi.org/10.1109/ACCESS.2021.3085584

Koam, A. N., Ahmad, A., Alatawi, M. S., Nadeem, M. F., & Azeem, M. (2021). Computation of metric-based resolvability of quartz without pendant nodes. IEEE Access, 9, 151834-151840. https://doi.org/10.1109/ACCESS.2021.3126455

Anitha, K., Aruna Devi, R., Munir, M., & Nisar, K. S. (2021). Metric dimension of rough graphs. International Journal of Nonlinear Analysis and Applications, 12, 1793-1806. https://doi.org/10.22075/IJNAA.2021.5891

Moscarini, M. (2022). Computing a metric basis of a bipartite distance-hereditary graph. Theoretical Computer Science, 900, 20-24. https://doi.org/10.1016/j.tcs.2021.11.015

Koam, A. N., Haider, A., & Ansari, M. A. (2019). Pseudo-metric on KU-algebras. The Korean Journal of Mathematics, 27(1), 131-140. https://doi.org/org/10.11568/kjm.2019.27.1.131

Ahmad, A., Bača, M., & Sultan, S. (2019). On Metric Dimension and Minimal doubly resolving sets of Harary graph. Acta Mathematica Universitatis Comenianae, 89(1), 123-129.

Ahmad, A., Bača, M., & Sultan, S. (2020). Computing the metric dimension of Kayak Paddles graph and Cycles with chord. Proyecciones journal of mathematics, 39(2), 287-300. https://doi.org/10.22199/issn.0717-6279-2020-02-0018

Ahmad, A., Baca, M., & Sultan, S. (2018). Minimal doubly resolving sets of Necklace graph. Mathematical report, 20(70), 123-129.

Vetrik, T., & Ahmad, A. (2017). Computing the metric dimension of the categorial product of graphs. International Journal of Computer Mathematics, 94(2), 363-371. https://doi.org/10.1080/00207160.2015.1109081

Ahmad, A., & Sultan, S. (2017). On minimal doubly resolving sets of circulant graphs. Acta Mechanica Slovaca, 20(1), 6-11. https://doi.org/10.21496/ams.2017.002

Raza, H., Hayat, S., & Pan, X. F. (2019). On the fault-tolerant metric dimension of certain interconnection networks. Journal of Applied Mathematics and Computing, 60, 517-535. https://doi.org/10.1007/s12190-018-01225-y

Raza, H., Hayat, S., Imran, M., & Pan, X. F. (2019). Fault-tolerant resolvability and extremal structures of graphs. Mathematics, 7(1), 78. https://doi.org/10.3390/math7010078

Raza, H., Hayat, S., & Pan, X. F. (2018). On the fault-tolerant metric dimension of convex polytopes. Applied Mathematics and Computing, 339, 172-185. https://doi.org/10.1016/j.amc.2018.07.010

Mahapatra, T., Ghorai, G., & Pal, M. (2020). Fuzzy fractional coloring of fuzzy graph with its application, Journal of Ambient Intelligence and Humanized Computing, 11, 5771-5784. https://doi.org/10.1007/s12652-020-01953-9

Mehreen, N., Farooq, R., & Akhter S. (2018). On partition dimension of fullerene graphs. AIMS Mathematics, 3(3), 343–352. https://doi.org/10.3934/Math.2018.3.343

Rajan, B., William, A., Rajasingh, I., Grigorious, C., & Stephen, S. (2012). On certain networks with partition dimension three. In Proceedings of the International Conference on Mathematics in Engineering and Business Management, (pp. 169-172).

Javaid, I., & Shokat, S. (2008). On the partition dimension of some wheel related graphs. Journal of Prime Research in Mathematics, 4, 154–164.

Rodrıguez-Velazquez, J. A., Yero, I. G., & Lemańska, M. (2014). On the partition dimension of trees. Discrete Applied Mathematics, 166, 204–209. https://doi.org/10.1016/j.dam.2013.09.026

Fernau, H.. Rodrıguez-Velızquez, J. A., & Yero, I. G. (2014). On the partition dimension of unicyclic graphs. Bulletin Mathématique de la Société des Sciences Mathématiques de Roumanie, 57(4), 381–391.

Baskoro, E. T., & Haryeni, D. O. (2020). All graphs of order n ≥ 11 and diameter 2 with partition dimension n-3. Heliyon, 6(4), e03694. https://doi.org/10.1016/j.heliyon.2020.e03694

Vertana, H., & Kusmayadi, T. A. (2017). On the partition dimension of Cm + Pn graph. In Journal of Physics: Conference Series (Vol. 855, No. 1, p. 012058). IOP Publishing. 855, 012058. DOI https://doi.org/10.1088/1742-6596/855/1/012058

Grigorious, C., Stephen, S., Rajan, B., & Miller, M. (2017). On the partition dimension of circulant graphs. The Computer Journal, 60(2), 180-184. https://doi.org/10.1093/comjnl/bxw079

Maritz, E.C.M., & Vetrik, T. (2017). The partition dimension of circulant graphs. Quaestiones Mathematicae, 41(1), 49-63. https://doi.org/10.2989/16073606.2017.1370031

Safriadi, S., Hasmawati, H., & Haryanto, L. (2020). Partition dimension of complete multipartite graph. Jurnal Matematika, Statistika dan Komputasi, 16(3), 365-374. https://doi.org/10.20956/jmsk.v16i3.7278

Slater, P. J. (1975). Leaves of trees: Proceeding of the 6th Southeastern Conference on Combinatorics, Graph Theory, and Computing. Congressus Numerantium, 14, 549-559.

Harary, F., & Melter, R. A. (1976). On the metric dimension of a graph. Ars Combinatoria, 2, 191-195.

Chartrand, G., Salehi, E., & Zhang, P. (2000). The partition dimension of graph. Aequationes Mathematicae, 59, 45-54. https://doi.org/10.1007/PL00000127

Chartrand, G., Eroh, L., Johnson, M. A., & Oellermann, O. R. (2000). Resolvability in graphs and the metric dimension of a graph. Discrete Applied Mathematics, 105 (1-3), 99-113.

Khuller, S., Raghavachari, B., & Rosenfeld, A. (1996). Landmarks in graphs, Discrete Applied Mathematics, 70(3), 217-229., 1996. https://doi.org/10.1016/0166-218X(95)00106-2

Sebő, A., & Tannier, E. (2004). On metric generators of graphs. Mathematics and Operational Research, 29, 383-393. https://doi.org/10.1287/moor.1030.0070

Nadeem, M. F., Hassan, M., Azeem, M., Ud-Din Khan, S., Shaik, M. R., Sharaf, M. A. F., Abdelgawad, A., & Awwad, E. M. (2021). Application of resolvability technique to investigate the different polyphenyl structures for polymer industry. Journal of Chemistry, 2021, 6633227. https://doi.org/10.1155/2021/6633227

Ahmad, A., Koam, A.N A., Siddiqui, M.H.F., & Azeem, M. (2022). Resolvability of the starphene structure and applications in electronics, Ain Shams Engineering Journal, 13(2), 101587. https://doi.org/10.1016/j.asej.2021.09.014

Cáceres, J., Hernando, C., Mora, M., Pelayo, I. M., Puertas, M. L., Seara, C., & Wood, D. R. (2007). On the metric dimension of cartesian product of graphs. SIAM Journal on Discrete Mathematics, 21(2), 423-441. https://doi.org/10.1137/050641867

Beerliova, Z., Eberhard, F., Erlebach, T., Hall, A., Hoffmann, M., Mihal'ak, M., & Ram, L. S. (2006). Network discovery and verification. IEEE Journal on Selected Areas in Communications, 24(12), 2168-2181. https://doi.org/10.1109/JSAC.2006.884015

Chvatal, V. (1983). Mastermind. Combinatorica, 3, 325-329. https://doi.org/10.1007/BF02579188

Melter, R. A., & Tomescu, I. (1984). Metric bases in digital geometry. Computer Vision Graphics and Image Processing, 25(1), 113-121. https://doi.org/10.1016/0734-189X(84)90051-3

Hernando, C., Mora, M., Slater, P.J., & Wood, D. R. (2008). Fault-tolerant metric dimension of graphs, Proceedings International Conference on Convexity in Discrete Structures; Ramanujan Mathematical Society Lecture Notes; Ramanujan Mathematical Society: Tiruchirappalli, 5, 81-85.

Published

2024-08-07

How to Cite

Azeem, M. ., & Jamil, M. K. (2024). Constant Partition Dimension of Different Anticancer Drug Structures. Spectrum of Decision Making and Applications, 1(1), 64-83. https://doi.org/10.31181/sdmap1120245