Constant Partition Dimension of Different Anticancer Drug Structures
DOI:
https://doi.org/10.31181/sdmap1120245Keywords:
Anticancer drug structures, Vertex partition dimension, Locating number, Prtition resolving setAbstract
Cancer is the rapidly expanding number of unwelcome cells in the body. Carcinogens are substances that cause symptoms. A certain type of chemical molecule in cigarette smoke is known as a carcinogen. It can spread to several bodily parts. Some of this illness's indications and symptoms include a lump, unusual bleeding, a persistent cough, weight increase or decrease, etc. One of the biggest contributors to this malignant illness is tobacco chewing. Factors include obesity, a bad diet, laziness, and increasing alcohol consumption. Anticancer medications are used to cure this disease. In this work, we studied some of the anticancer medications in terms of partition dimension, where the partition resolving set is an improper subset to settle the entire atom set of a graph into a unique way to access each atom independently.
Downloads
References
Figuerola, B., & Avila, C. (2019). The phylum bryozoa as a promising source of anticancer drugs. Marine Drugs, 17(8), 477. https://doi.org/10.3390/md17080477
Gao, W., Wang, W., F. & Farahani, M. R. (2016). Topological indices study of molecular structure in anticancer drugs. Journal of Chemistry, 2016, 3216327. https://doi.org/10.1155/2016/3216327
Kumar, S., Ahmad, M. K., Waseem, M., & Pandey, A. K. (2015). Drug targets for cancer treatment: an overview. Medicinal Chemistry, 5(3), 115-123. https://doi.org/10.4172/2161-0444.1000252
Al Khabyah, A. A., Jamil, M. K., Koam, A. N., A. Javed, A., & Azeem, M. (2022). Partition dimension of COVID antiviral drug structures. Mathematical Biosciences and Engineering, 19(10), 10078-10095. https://doi.org/10.3934/mbe.2022471
Shanmukha, M. C., Basavarajappa, N. S., Shilpa, K. C., & Usha, A. (2020). Degreebased topological indices on anticancer drugs with QSPR analysis. Heliyon, 6(6), e04235. https://doi.org/10.1016/j.heliyon.2020.e04235
Azeem, M., Jamil, M. K., Javed, A., & Ahmad, A. (2022). Verification of some topological indices of Y-junction based nanostructures by M-polynomials. Journal of Mathematics, 2022, 8238651. https://doi.org/10.1155/2022/8238651
Azeem, M., Imran, M., & Nadeem, M. F. (2021). Sharp bounds on partition dimension of hexagonal Mobius ladder. Journal of King Saud University-Science, 34(2), 101779. https://doi.org/10.1016/j.jksus.2021.101779
Azeem, M., Anwar, S., Jamil, M. K., Saeed, M., & Deveci, M. (2024). Topological Numbers of Fuzzy Soft Graphs and Their Application. Information Sciences, 667, 120468. https://doi.org/10.1016/j.ins.2024.120468
Koam, A. N. A., Azeem, M., Ahmad, A., & Masmali, I. (2024). Connection Numberbased Molecular Descriptors of Skin Cancer Drugs. Ain Shams Engineering Journal, 15(6), 102750. https://doi.org/10.1016/j.asej.2024.102750
Singh, P., Sharma, S., Sharma, S. K., & Bhat, V. K. (2021). Metric dimension and edge metric dimension of windmill graphs. AIMS Mathematics, 6(9), 9138-9153. https://doi.org/10.3934/math.2021531
Estrada-Moreno, A., Yero, I. G., & Rodríguez-Velázquez, J. A. (2021). On the (k,t)-metric dimension of graphs. The Computer Journal, 64(5), 707-720. https://doi.org/10.1093/comjnl/bxaa009
Pirzada, S., & Aijaz, M. (2021). On graphs with same metric and upper dimension. Discrete Mathematics, Algorithms and Applications, 13(2), 2150015. https://doi.org/10.1142/S1793830921500154
Azeem, M., & Nadeem, M. F. (2021). Metric-based resolvability of polycyclic aromatic hydrocarbons. The European Physical Journal Plus, 136, 395. https://doi.org/10.1140/epjp/s13360-021-01399-8
Imran, S., Siddiqui, M. K., Imran, M., & Hussain, M. (2018). On metric dimensions of symmetric graphs obtained by rooted product. Mathematics, 6(10), 191. https://doi.org/10.3390/math6100191
Koam, A. N., Ahmad, A., Abdelhag, M. E., & Azeem, M. (2021). Metric and fault tolerant metric dimension of hollow coronoid. IEEE Access, 9, 81527-81534. https://doi.org/10.1109/ACCESS.2021.3085584
Koam, A. N., Ahmad, A., Alatawi, M. S., Nadeem, M. F., & Azeem, M. (2021). Computation of metric-based resolvability of quartz without pendant nodes. IEEE Access, 9, 151834-151840. https://doi.org/10.1109/ACCESS.2021.3126455
Anitha, K., Aruna Devi, R., Munir, M., & Nisar, K. S. (2021). Metric dimension of rough graphs. International Journal of Nonlinear Analysis and Applications, 12, 1793-1806. https://doi.org/10.22075/IJNAA.2021.5891
Moscarini, M. (2022). Computing a metric basis of a bipartite distance-hereditary graph. Theoretical Computer Science, 900, 20-24. https://doi.org/10.1016/j.tcs.2021.11.015
Koam, A. N., Haider, A., & Ansari, M. A. (2019). Pseudo-metric on KU-algebras. The Korean Journal of Mathematics, 27(1), 131-140. https://doi.org/org/10.11568/kjm.2019.27.1.131
Ahmad, A., Bača, M., & Sultan, S. (2019). On Metric Dimension and Minimal doubly resolving sets of Harary graph. Acta Mathematica Universitatis Comenianae, 89(1), 123-129.
Ahmad, A., Bača, M., & Sultan, S. (2020). Computing the metric dimension of Kayak Paddles graph and Cycles with chord. Proyecciones journal of mathematics, 39(2), 287-300. https://doi.org/10.22199/issn.0717-6279-2020-02-0018
Ahmad, A., Baca, M., & Sultan, S. (2018). Minimal doubly resolving sets of Necklace graph. Mathematical report, 20(70), 123-129.
Vetrik, T., & Ahmad, A. (2017). Computing the metric dimension of the categorial product of graphs. International Journal of Computer Mathematics, 94(2), 363-371. https://doi.org/10.1080/00207160.2015.1109081
Ahmad, A., & Sultan, S. (2017). On minimal doubly resolving sets of circulant graphs. Acta Mechanica Slovaca, 20(1), 6-11. https://doi.org/10.21496/ams.2017.002
Raza, H., Hayat, S., & Pan, X. F. (2019). On the fault-tolerant metric dimension of certain interconnection networks. Journal of Applied Mathematics and Computing, 60, 517-535. https://doi.org/10.1007/s12190-018-01225-y
Raza, H., Hayat, S., Imran, M., & Pan, X. F. (2019). Fault-tolerant resolvability and extremal structures of graphs. Mathematics, 7(1), 78. https://doi.org/10.3390/math7010078
Raza, H., Hayat, S., & Pan, X. F. (2018). On the fault-tolerant metric dimension of convex polytopes. Applied Mathematics and Computing, 339, 172-185. https://doi.org/10.1016/j.amc.2018.07.010
Mahapatra, T., Ghorai, G., & Pal, M. (2020). Fuzzy fractional coloring of fuzzy graph with its application, Journal of Ambient Intelligence and Humanized Computing, 11, 5771-5784. https://doi.org/10.1007/s12652-020-01953-9
Mehreen, N., Farooq, R., & Akhter S. (2018). On partition dimension of fullerene graphs. AIMS Mathematics, 3(3), 343–352. https://doi.org/10.3934/Math.2018.3.343
Rajan, B., William, A., Rajasingh, I., Grigorious, C., & Stephen, S. (2012). On certain networks with partition dimension three. In Proceedings of the International Conference on Mathematics in Engineering and Business Management, (pp. 169-172).
Javaid, I., & Shokat, S. (2008). On the partition dimension of some wheel related graphs. Journal of Prime Research in Mathematics, 4, 154–164.
Rodrıguez-Velazquez, J. A., Yero, I. G., & Lemańska, M. (2014). On the partition dimension of trees. Discrete Applied Mathematics, 166, 204–209. https://doi.org/10.1016/j.dam.2013.09.026
Fernau, H.. Rodrıguez-Velızquez, J. A., & Yero, I. G. (2014). On the partition dimension of unicyclic graphs. Bulletin Mathématique de la Société des Sciences Mathématiques de Roumanie, 57(4), 381–391.
Baskoro, E. T., & Haryeni, D. O. (2020). All graphs of order n ≥ 11 and diameter 2 with partition dimension n-3. Heliyon, 6(4), e03694. https://doi.org/10.1016/j.heliyon.2020.e03694
Vertana, H., & Kusmayadi, T. A. (2017). On the partition dimension of Cm + Pn graph. In Journal of Physics: Conference Series (Vol. 855, No. 1, p. 012058). IOP Publishing. 855, 012058. DOI https://doi.org/10.1088/1742-6596/855/1/012058
Grigorious, C., Stephen, S., Rajan, B., & Miller, M. (2017). On the partition dimension of circulant graphs. The Computer Journal, 60(2), 180-184. https://doi.org/10.1093/comjnl/bxw079
Maritz, E.C.M., & Vetrik, T. (2017). The partition dimension of circulant graphs. Quaestiones Mathematicae, 41(1), 49-63. https://doi.org/10.2989/16073606.2017.1370031
Safriadi, S., Hasmawati, H., & Haryanto, L. (2020). Partition dimension of complete multipartite graph. Jurnal Matematika, Statistika dan Komputasi, 16(3), 365-374. https://doi.org/10.20956/jmsk.v16i3.7278
Slater, P. J. (1975). Leaves of trees: Proceeding of the 6th Southeastern Conference on Combinatorics, Graph Theory, and Computing. Congressus Numerantium, 14, 549-559.
Harary, F., & Melter, R. A. (1976). On the metric dimension of a graph. Ars Combinatoria, 2, 191-195.
Chartrand, G., Salehi, E., & Zhang, P. (2000). The partition dimension of graph. Aequationes Mathematicae, 59, 45-54. https://doi.org/10.1007/PL00000127
Chartrand, G., Eroh, L., Johnson, M. A., & Oellermann, O. R. (2000). Resolvability in graphs and the metric dimension of a graph. Discrete Applied Mathematics, 105 (1-3), 99-113.
Khuller, S., Raghavachari, B., & Rosenfeld, A. (1996). Landmarks in graphs, Discrete Applied Mathematics, 70(3), 217-229., 1996. https://doi.org/10.1016/0166-218X(95)00106-2
Sebő, A., & Tannier, E. (2004). On metric generators of graphs. Mathematics and Operational Research, 29, 383-393. https://doi.org/10.1287/moor.1030.0070
Nadeem, M. F., Hassan, M., Azeem, M., Ud-Din Khan, S., Shaik, M. R., Sharaf, M. A. F., Abdelgawad, A., & Awwad, E. M. (2021). Application of resolvability technique to investigate the different polyphenyl structures for polymer industry. Journal of Chemistry, 2021, 6633227. https://doi.org/10.1155/2021/6633227
Ahmad, A., Koam, A.N A., Siddiqui, M.H.F., & Azeem, M. (2022). Resolvability of the starphene structure and applications in electronics, Ain Shams Engineering Journal, 13(2), 101587. https://doi.org/10.1016/j.asej.2021.09.014
Cáceres, J., Hernando, C., Mora, M., Pelayo, I. M., Puertas, M. L., Seara, C., & Wood, D. R. (2007). On the metric dimension of cartesian product of graphs. SIAM Journal on Discrete Mathematics, 21(2), 423-441. https://doi.org/10.1137/050641867
Beerliova, Z., Eberhard, F., Erlebach, T., Hall, A., Hoffmann, M., Mihal'ak, M., & Ram, L. S. (2006). Network discovery and verification. IEEE Journal on Selected Areas in Communications, 24(12), 2168-2181. https://doi.org/10.1109/JSAC.2006.884015
Chvatal, V. (1983). Mastermind. Combinatorica, 3, 325-329. https://doi.org/10.1007/BF02579188
Melter, R. A., & Tomescu, I. (1984). Metric bases in digital geometry. Computer Vision Graphics and Image Processing, 25(1), 113-121. https://doi.org/10.1016/0734-189X(84)90051-3
Hernando, C., Mora, M., Slater, P.J., & Wood, D. R. (2008). Fault-tolerant metric dimension of graphs, Proceedings International Conference on Convexity in Discrete Structures; Ramanujan Mathematical Society Lecture Notes; Ramanujan Mathematical Society: Tiruchirappalli, 5, 81-85.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Muhammad Azeem, Muhammad Kamran Jamil (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.